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Abstract. Radiation therapy (RT) is widely employed in the clinic for
the treatment of head and neck (HaN) cancers. An essential step of RT
planning is the accurate segmentation of various organs-at-risks (OARs)
in HaN CT images. Nevertheless, segmenting OARs manually is time-
consuming, tedious, and error-prone considering that typical HaN CT
images contain tens to hundreds of slices. Automated segmentation algo-
rithms are urgently required. Recently, convolutional neural networks
(CNNs) have been extensively investigated on this task. Particularly,
3D CNNs are frequently adopted to process 3D HaN CT images. There
are two issues with näıve 3D CNNs. First, the depth resolution of 3D
CT images is usually several times lower than the in-plane resolution.
Direct employment of 3D CNNs without distinguishing this difference
can lead to the extraction of distorted image features and influence the
final segmentation performance. Second, a severe class imbalance prob-
lem exists, and large organs can be orders of times larger than small
organs. It is difficult to simultaneously achieve accurate segmentation
for all the organs. To address these issues, we propose a novel hybrid
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CNN that fuses 2D and 3D convolutions to combat the different spa-
tial resolutions and extract effective edge and semantic features from
3D HaN CT images. To accommodate large and small organs, our final
model, named OrganNet2.5D, consists of only two instead of the clas-
sic four downsampling operations, and hybrid dilated convolutions are
introduced to maintain the respective field. Experiments on the MIC-
CAI 2015 challenge dataset demonstrate that OrganNet2.5D achieves
promising performance compared to state-of-the-art methods.

Keywords: Segmentation of organs-at-risks · Hybrid 2D and 3D
convolutions · 3D HaN CT images

1 Introduction

Head and neck (HaN) cancers, such as oral cavity and nasopharynx, are one
of the most prevalent cancer types worldwide [19]. Treatment of HaN cancers
relies primarily on radiation therapy. To prevent possible post-treatment com-
plications, accurate segmentation of organs-at-risks (OARs) is vital during the
treatment planning [6]. In the clinic, computed tomography (CT)-based treat-
ment planning is routinely conducted because of its high efficiency, high spatial
resolution, and the ability to provide relative electron density information. Man-
ual delineation of OARs in CT images is still the primary choice regardless
of the time-consuming and tedious process. Several hours are required to pro-
cess the images of only one patient [7]. Besides, it subjects to high inter- and
intra-observer variations, which can significantly influence the prognosis of the
treatment [1]. Automatic segmentation methods are in urgent need to speed up
the process and achieve robust outcomes.

The low contrast of soft tissues in HaN CT images and the large volume
size variations of different organs make it challenging to achieve automatic and
accurate segmentation of all OARs in an end-to-end fashion. Conventional learn-
ing approaches often rely on one or multiple atlases or require the extraction of
hand-crafted image features [2,21], which is difficult to be enough comprehensive
and distinctive for the segmentation task. Deep neural networks, especially con-
volutional neural networks (CNNs), have proved to be highly effective for med-
ical image segmentation in different applications [9,13]. Many efforts have been
devoted to CNN-based segmentation of OARs in HaN CT images. To deal with
the class imbalance issue caused by the differently sized organs, image patches
based on certain prior knowledge were extracted before conducting CNN-based
segmentation [8,15]. Two-step CNNs consisting of a region detector and a seg-
mentation unit were also employed [12,17]. To make full use of the image infor-
mation, a joint localization and segmentation network with a multi-view spatial
aggregation framework was proposed [10]. The inputs to these models were either
3D image patches lacking the global features or 2D images without the depthwise
information. AnatomyNet was designed to specifically process whole-volume 3D
HaN CT images [22]. The major contributions of AnatomyNet include a novel
network architecture for effective feature extraction and a combined loss func-
tion to combat the class imbalance problem. Following AnatomyNet, FocusNet
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was proposed to better handle the segmentation of both large and small organs
with a delicate network structure design [4].

Despite the inspiring results achieved, several issues exist in the developed
approaches. First, some studies dealt with only 2D inputs and thus, did not
fully exploit the 3D image information [8,10,12]. Others conducted 3D convolu-
tions but without paying attention to the different in-plane and depth resolutions
[4,15,22]. The in-plane resolution of 3D HaN CT images is normally several times
higher than the depth resolution. The direct employment of 3D convolutions can
probably lead to the extraction of distorted image features, which might not be
optimal for the segmentation task. Anisotropic convolutions have been proposed
to solve this issue but without distinguishing the low-level and high-level features
[11]. Second, for networks processing whole volume 3D CT images (AnatomyNet
and FocusNet), only one downsampling layer was used to preserve the informa-
tion of small anatomies. Consequently, the receptive fields of these networks are
limited. To increase the receptive field, DenseASPP with four dilation rates (3,
6, 12, and 18) was introduced to FocusNet [4]. However, when the dilation rates
of cascaded dilated convolutions have a common factor relationship, the gridding
issue may appear that influence the segmentation accuracy [20]. Besides, pure
3D networks also suffer from increased parameters and computational burden
issues, which also limit the network depth and performance.

To address these issues, a hybrid convolutional neural network, Organ-
Net2.5D, is proposed in this work to improve the segmentation performance
of OARs in HaN CT images. OrganNet2.5D integrates 2D convolutions with
3D convolutions to simultaneously extract clear low-level edge features and rich
high-level semantic features. The hybrid dilated convolution (HDC) module is
introduced to OrganNet2.5D as a replacement for the DenseASPP in FocusNet.
HDC module is able to increase the network receptive field without decreasing
the image resolutions and at the same time, avoid the gridding issue. Organ-
Net2.5D has three blocks: the 2D convolution block for the extraction of clear
edge image features, the coarse 3D convolution block for the extraction of coarse
high-level semantic features with a limited receptive field, and the fine 3D con-
volution block for the extraction of refined high-level semantic features with an
enlarged receptive field through the utilization of HDC. Similar to AnatomyNet
and FocusNet [4,22], a combined loss of Dice loss and focal loss is employed to
handle the class imbalance problem. The effectiveness of the proposed Organ-
Net2.5D is evaluated on two datasets. On the publicly available MICCAI Head
and Neck Auto Segmentation Challenge 2015 dataset (MICCAI 2015 challenge
dataset), promising performance is achieved by OrganNet2.5D compared to
state-of-the-art approaches.

2 Method

2.1 Dataset

We evaluate the performance of our proposed model on two datasets. The first
dataset is collected from two resources of 3D HaN CT images (the Head-Neck
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Fig. 1. An illustration of the proposed OrganNet2.5D network architecture. The blue,
yellow, and green boxes indicate the 2D convolution block, the coarse 3D convolution
block, and the fine 3D convolution block, respectively. (Color figure online)

Fig. 2. The 2 × Conv + ResSE unit. “×” refers to element-wise multiplication and
“+” is element-wise summation.

Cetuximab collection (46 samples) [3] and the Martin Vallières of the Medical
Physics Unit, McGill University, Montreal, Canada (261 samples)1). This first
dataset is utilized to validate the effectiveness of the different blocks of our model.
Segmentation annotations of 24 OARs are provided by experienced radiologists
with quality control management. We randomly grouped the 307 samples into a
training set of 240 samples, a validation set of 20 samples, and a test set of 47
samples. To compare the performance of our proposed method to the existing
approaches, we utilize the MICCAI 2015 challenge dataset [14]. There are 48
samples, among which 33 samples are provided as the training set, 10 as the
offset test set, and the remaining 5 as the onsite test set. Manual segmentation
of 9 OARs is available for the 33 training samples and 10 offset test samples.
Similar to previous studies, we optimize our model with the training samples
and report the model performance on the 10 offset test samples.

1 https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-PET-CT.

https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-PET-CT
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2.2 Network Architecture

The overall network architecture of our proposed OrganNet2.5D is shown in
Fig. 1. OrganNet2.5D follows the classic encoder-decoder segmentation network
structure [16]. The inputs to our network are the whole volume 3D HaN CT
images and the outputs are the segmentation results of the 25 categories for the
first dataset (24 OARs and background) or 10 categories (9 OARs and back-
ground) for the MICCAI 2015 challenge dataset. OrganNet2.5D contains three
major blocks, the 2D convolution block, the coarse 3D convolution block, and
the fine 3D convolution block.

2D Convolution Block. The 2D convolution block is designed for the extrac-
tion of clear edge image features. It is widely accepted that during image encod-
ing, the low-level features extract the geometric information and the high-level
features extract the semantic information. Therefore, in our model, only the first
two convolutions near the inputs and the corresponding last two convolutions
near the outputs are replaced with 2D convolutions. Without the direct applica-
tion of 3D convolutions, distorted image edge feature extraction can be avoided.
Meanwhile, considering the different in-plane and depth image resolutions, in-
plane downsampling is conducted with the 2D convolution block to calibrate the
image features for the following 3D convolution operations.

Coarse 3D Convolution Block. The 2D convolution block is followed by
the coarse 3D convolution block. To prevent information loss, especially for the
small anatomies, only one downsampling is preserved. The coarse 3D convolution
block is designed to extract rich semantic features that are important for the
pixel-wise distinction task. Following the successful practice of existing methods,
the basic unit of our coarse 3D convolution block is composed of two standard
3D convolution layers and one squeeze-and-excitation residual module (ResSE
module, Fig. 2). The ResSE module is responsible for feature filtering to highlight
the important features and suppress the irrelevant ones. With the filtered image
features, the final segmentation step can concentrate more on the important
features and better results can be expected.

Fine 3D Convolution Block. With the 2D convolution block and coarse 3D
convolution block, clear edge and rich semantic image features are extracted.
However, since only two downsampling layers are used (one 2D downsampling
and one 3D downsampling), the receptive field of the network is limited. Without
the global image information, the segmentation accuracy may be compromised.
As such, a series of hybrid dilated convolution (HDC) modules is employed
to integrate the global image information with the semantic features and at
the same time, to prevent the gridding issue [20]. Moreover, by using different
dilation rates, multi-scale image features are extracted, which can better process
the OARs of different sizes.
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2.3 Loss Function

A combination of focal loss and Dice loss is employed to prevent the model from
biasing the large objects.

Focal loss forces the network to focus on the hard samples, which refers to
the samples predicted by the network with high uncertainty. It is improved from
the cross-entropy loss with both fixed and dynamic loss weighting strategies.
The focal loss is calculated as:

Lfocal = − 1
N

N∑

n=1

C∑

c=1

αc(1 − pc
n)γyc

nlogpc
n (1)

where N refers to the sample size, C refers to the different categories (25 for the
first dataset and 10 for the second), αc is the fixed loss weight of the cth OAR,
p ∈ [0, 1] is the network prediction, (1 − pc

n)γ is the dynamic loss weight, and
y ∈ {0, 1} is the manual label.

Dice loss deals with the class imbalance problem by minimizing the distribu-
tion distance between the network prediction and the manual segmentation. For
multi-class segmentation, one Dice loss should be calculated for each class and
the final Dice loss is the average over all the classes. In this work, the average
Dice loss is calculated as:

Lavgdice = 1 − 1
C

C∑

c=1

N∑

n=1

2 × pc
n × yc

n

pc
n + yc

n

(2)

The final loss function for our network training is a weighted summation of
the two losses:

L = Lfocal + λLavgdice (3)

For our experiments, we empirically set γ = 2 and λ = 1.0. The fixed weights
αc in the focal loss for the first dataset are 0.5, 1.0, 1.0, 1.0, 4.0, 4.0, 4.0, 4.0, 4.0,
1.0, 1.0, 4.0, 1.0, 1.0, 3.0, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 1.0, and 1.0 for the
25 categories (background, brain stem, eye left, eye right, lens left, lens right,
optic nerve left, optic nerve right, optic chiasma, temporal lobes left, temporal
lobes right, pituitary, parotid gland left, parotid gland right, inner ear left, inner
ear right, middle ear left, middle ear right, tongue, temporomandibular joint left,
temporomandibular joint right, spinal cord, mandible left, and mandible right),
and for the second dataset are 0.5, 1.0, 4.0, 1.0, 4.0, 4.0, 1.0, 1.0, 3.0, and 3.0 for
the 10 categories (background, brain stem, optic chiasma, mandible, optic nerve
left, optic nerve right, parotid gland left, parotid gland right, submandibular
left, submandibular right).

2.4 Implementation Details

All our models are implemented with PyTorch on an NVIDIA GeForce GTX
1080Ti GPU (11G) with a batch size of 2. The inputs to the networks are
resized to 256 × 256 × 48. Adam optimizer is utilized to train the models. The
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Table 1. Segmentation performance on the first dataset averaged over the 24 OARs
with different network configurations

Models 3DUNet-SE 3DUNet-SE-2D 3DUNet-SE-2D-C2 3DUNet-SE-2D-DC2 Proposed

DSC (%) 83.9 ± 2.0 84.4 ± 2.0 84.2 ± 2.1 84.3 ± 2.1 84.6 ± 1.9

95HD 3.38 3.39 3.24 3.41 3.07

Table 2. DSC of 10 small organs on the first dataset with different network configu-
rations (%)

Models 3DUNet-SE 3DUNet-SE-2D 3DUNet-SE-2D-C 3DUNet-SE-2D-DC Proposed

Lens L 82.7 ± 7.8 84.5 ± 6.8 83.5 ± 7.5 83.2 ± 6.5 84.4 ± 6.6

Lens R 82.6 ± 5.6 84.1 ± 5.8 83.3 ± 6.9 83.9 ± 5.4 83.9 ± 5.3

Opt. Ner. L 70.9 ± 10.0 71.0 ± 10.1 70.7 ± 10.2 70.5 ± 10.8 71.1 ± 10.3

Opt. Ner. R 70.1 ± 8.7 71.7 ± 8.9 71.8 ± 9.3 70.4 ± 9.1 71.2 ± 9.2

Opt. Chiasm 57.2 ± 14.3 59.6 ± 15.1 57.8 ± 15.4 58.0 ± 14.9 59.8 ± 14.8

Pituitary 74.4 ± 11.6 75.1 ± 13.0 74.3 ± 12.4 75.1 ± 11.4 75.6 ± 12.3

Mid. Ear L 86.4 ± 5.1 86.6 ± 4.8 86.5 ± 5.1 86.7 ± 4.9 86.9 ± 5.1

Mid. Ear R 85.4 ± 4.1 85.5 ± 4.3 85.8 ± 4.6 85.6 ± 4.7 85.9 ± 4.3

T.M.J. L 83.5 ± 7.2 83.8 ± 7.5 83.8 ± 7.1 82.7 ± 7.8 83.8 ± 7.2

T.M.J. R 82.1 ± 8.3 81.6 ± 8.8 82.8 ± 7.9 82.7 ± 8.2 82.9 ± 7.9

step decay learning rate strategy is used with an initial learning rate of 0.001
that is reduced by a factor of 10 every 50 epochs until it reaches 0.00001. Two
evaluation metrics are calculated to characterize the network performance, the
Dice score coefficient (DSC) and the 95% Hausdorff distance (95HD).

3 Experimental Results

3.1 Results on the Collected Public Dataset

Ablation studies regarding our network design are conducted. Average DSC
and 95HD on the test set are listed in Table 1. DSC values of the 10 small
organs are presented in Table 2. See supplementary material for results on all 24
organs. Four network configurations are involved. 3DUNet-SE refers to the base-
line where 3D UNet is combined with the ResSE module. 3DUNet-SE includes
only the coarse 3D convolution block in Fig. 1. Introducing the 2D convolution
block to 3DUNet-SE, we obtain the 3DUNet-SE-2D model. 3DUNet-SE-2D-C
replaces the HDC module in the proposed OrganNet2.5D (Fig. 1) with standard
3D convolutions, and 3DUNet-SE-2D-DC replaces the HDC module with dilated
convolutions of the same dilation rate of 2.

Overall, our proposed model achieves the highest mean DSC and lowest mean
95HD. Statistical analysis confirms that our model performs significantly better
than the other network configurations (p < 0.05 with paired t-tests of the DSC
values). These results reflect that both the 2D convolution block and the fine 3D



576 Z. Chen et al.

convolution block can enhance the segmentation results. Furthermore, our pro-
posed OrganNet2.5D gives excellent performance on small organ segmentation
by generating the best results for 7 of the 10 small organs (Table 2).

Table 3. Segmentation results on the MICCAI 2015 challenge dataset

Models MICCAI 2015 AnatomyNet [22] FocusNet [4] SOARS [5] SCAA [18] Proposed

Brain Stem 88.0 86.7 ± 2 87.5 ± 2.6 87.6 ± 2.8 89.2 ± 2.6 87.2 ± 3.0

Opt. Chiasm 55.7 53.2 ± 15 59.6 ± 18.1 64.9 ± 8.8 62.0 ± 16.9 66.3 ± 7.4

Mandible 93.0 92.5 ± 2 93.5 ± 1.9 95.1 ± 1.1 95.2 ± 1.3 92.2 ± 2.1

Opt. Ner. L 64.4 72.1 ± 6 73.5 ± 9.6 75.3 ± 7.1 78.4 ± 6.1 75.0 ± 7.8

Opt. Ner. R 63.9 70.6 ± 10 74.4 ± 7.2 74.6 ± 5.2 76.0 ± 7.5 74.1 ± 5.1

Parotid L 82.7 88.1 ± 2 86.3 ± 3.6 88.2 ± 3.2 89.3 ± 1.5 86.7 ± 2.6

Parotid R 81.4 87.4 ± 4 87.9 ± 3.1 88.2 ± 5.2 89.2 ± 2.3 85.8 ± 4.9

Subman. L 72.3 81.4 ± 4 79.8 ± 8.1 84.2 ± 7.3 83.2 ± 4.9 82.1 ± 5.8

Subman. R 72.3 81.3 ± 4 80.1 ± 6.1 83.8 ± 6.9 80.7 ± 5.2 82.1 ± 4.1

Mean DSC 74.9 79.2 80.3 82.4 82.6 81.3

3.2 Results on MICCAI 2015 Challenge Dataset

We compare the performance of our proposed model to the state-of-the-art meth-
ods on the MICCAI 2015 challenge dataset (Table 3). It should be noted that in
the table, the MICCAI 2015 results were the best results obtained for each OAR
possibly by different methods. AnatomyNet was trained with additional samples
except for the MICCAI 2015 challenge dataset. All the results of existing meth-
ods are adopted from the respective papers without method re-implementation
to avoid implementation biases.

Segmentation results show that our proposed model achieves better perfor-
mance than the three most prevalent methods in the field (MICCAI 2015, Anoto-
myNet, and FocusNet) indicated by the mean DSC, which confirms the effective-
ness of the proposed network. Compared to the two recently published methods,
SOARS and SCAA, our method is slightly worse. However, it should be noted
that SOARS utilized neural network search to find the optimal network architec-
ture [5], which is more computationally intensive. SCAA combined the 2D and
3D convolutions with a very complicated network design [18]. Nevertheless, with
the simple and easy-to-implement architecture, our OrganNet2.5D still performs
the best when segmenting the smallest organ, optic chiasma. This observation
reflects the suitability of our network modifications and training strategy for our
task. Visual results lead to similar conclusions as to the quantitative results (See
supplementary material for details).

4 Conclusion

In this study, we present a novel network, OrganNet2.5D, for the segmentation
of OARs in 3D HaN CT images, which is a necessity for the treatment planning
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of radiation therapy for HaN cancers. To fully utilize the 3D image informa-
tion, deal with the different in-plane and depth image resolutions, and solve
the difficulty of simultaneous segmentation of large and small organs, Organ-
Net2.5D consists of a 2D convolution block to extract clear edge image features,
a coarse 3D convolution block to obtain rich semantic features, and a fine 3D
convolution block to generate global and multi-scale image features. The effec-
tiveness of OrganNet2.5D was evaluated on two datasets. Promising performance
was achieved by our proposed OrganNet2.5D compared to the state-of-the-art
approaches, especially on the segmentation of small organs.
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